Cholinergic Modulation of Narcoleptic Attacks in Double Orexin Receptor Knockout Mice
نویسندگان
چکیده
To investigate how cholinergic systems regulate aspects of the sleep disorder narcolepsy, we video-monitored mice lacking both orexin (hypocretin) receptors (double knockout; DKO mice) while pharmacologically altering cholinergic transmission. Spontaneous behavioral arrests in DKO mice were highly similar to those reported in orexin-deficient mice and were never observed in wild-type (WT) mice. A survival analysis revealed that arrest lifetimes were exponentially distributed indicating that random, Markovian processes determine arrest lifetime. Low doses (0.01, 0.03 mg/kg, i.p.), but not a high dose (0.08 mg/kg, i.p.) of the cholinesterase inhibitor physostigmine increased the number of arrests but did not alter arrest lifetimes. The muscarinic antagonist atropine (0.5 mg/kg, i.p.) decreased the number of arrests, also without altering arrest lifetimes. To determine if muscarinic transmission in pontine areas linked to REM sleep control also influences behavioral arrests, we microinjected neostigmine (50 nl, 62.5 µM) or neostigmine + atropine (62.5 µM and 111 µM respectively) into the nucleus pontis oralis and caudalis. Neostigmine increased the number of arrests in DKO mice without altering arrest lifetimes but did not provoke arrests in WT mice. Co-injection of atropine abolished this effect. Collectively, our findings establish that behavioral arrests in DKO mice are similar to those in orexin deficient mice and that arrests have exponentially distributed lifetimes. We also show, for the first time in a rodent narcolepsy model, that cholinergic systems can regulate arrest dynamics. Since perturbations of muscarinic transmission altered arrest frequency but not lifetime, our findings suggest cholinergic systems influence arrest initiation without influencing circuits that determine arrest duration.
منابع مشابه
Deletion of histidine decarboxylase (HDC) enhances the antinociceptive effects of orexin A in the central nervous system
It has long been established that histamine plays a role as a mediator of inflammation. From numerous studies, it has been well known that the amine has many pharmacological actions on a variety of organs. To evaluate the role of histamine in pain perception, we generated HDC knockout mice using a gene targeting method. Histamine is a hydrophilic autacoid, and in most tissues it is stored and s...
متن کاملDeletion of histidine decarboxylase (HDC) enhances the antinociceptive effects of orexin A in the central nervous system
It has long been established that histamine plays a role as a mediator of inflammation. From numerous studies, it has been well known that the amine has many pharmacological actions on a variety of organs. To evaluate the role of histamine in pain perception, we generated HDC knockout mice using a gene targeting method. Histamine is a hydrophilic autacoid, and in most tissues it is stored and s...
متن کاملSleeping Beauty, Mice, & Dogs: Cell Death in Narcolepsy
Sleep is important and required for the survival and normal homeostasis of vertebrates. Disturbances in the sleep-wake cycle can lead to many sleep disorders, one of which is narcolepsy. Narcolepsy is a disabling sleep disorder characterized by excessive daytime sleep, cataplexy (sudden loss of muscle tone in response to strong emotion or laughter), hallucinations, and sleep paralysis. To date,...
متن کاملAssesment of orexin receptor 1 in stress attenuated nociceptive behaviours in formalin test
Introduction: It is known that acute and chronic stress induce hormonal and neuronal changes which affecting both pain threshold and nociceptive behaviours. Orexin plays an important role in modulation of pain and stress. Considering pain modulation during stress and the role of orexin in pain and stress, orexin might be involved in pain modulation during stress.We evaluated the involvement ...
متن کاملDevelopmental divergence of sleep-wake patterns in orexin knockout and wild-type mice.
Narcolepsy, a disorder characterized by fragmented bouts of sleep and wakefulness during the day and night as well as cataplexy, has been linked in humans and nonhuman animals to the functional integrity of the orexinergic system. Adult orexin knockout mice and dogs with a mutation of the orexin receptor exhibit symptoms that mirror those seen in narcoleptic humans. As with narcolepsy, infant s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011